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Periodic waves in shallow water 

By P. J. BRYANT 
Fluid Mechanics Research Institute, University of Essex, Colchester, Essext 

(Received 12 May 1972 and in revised form 12 December 1972) 

An investigation is made into the evolution, from a sinusoidal initial wave train, 
of long periodic waves of small but finite amplitude propagating in one direction 
over water in a uniform channel. The spatially periodic surface displacement 
is expanded in a Fourier series with time-dependent coefficients. Equations for 
the Fourier coefficients are derived from three sources, namely the Korteweg- 
de Vries equation, the regularized long-wave equation proposed by Benjamin, 
Bona & Mahony (1972) and the relevant nonlinear boundary-value problem for 
Laplace’s equation. Solutions are found by analytical and by numerical methods, 
and the three models of the system are compared. The surface displacement is 
found to take the form of an almost linear superposition of wave trains of the 
same wavelength as the initial wave train. 

1. Introduction 
Gravity waves on the surface of water in a uniform channel form a dispersive 

nonlinear system. Dispersive effects are least for waves that are long compared 
with the depth. The present investigation is concerned with gravity waves for 
which the effects of dispersion and nonlinearity are of comparable small mag- 
nitude, that is, waves of small but finite amplitude and moderate length. 

An approximate governing equation for such waves propagating in one direc- 
tion into water originally at rest was obtained by Korteweg & de Vries (1895). 
If x denotes the direction of wave propagation measured in units of the length 
scale in this direction, and the time t is measured in units of the corresponding 
linear long-wave time scale, their equation may be written as 

?It + ?Ix + $“?Ix + $p2yxxx = w, ep2, 1.”. (1 .1)  

Here e 4 1 is the ratio of a typical wave amplitude to the undisturbed depth, 
,u 4 1 is the ratio of the undisturbed depth to the x length scale, and €7 is the 
ratio of the surface displacement to the undisturbed depth. An alternative 
equation, namely 

(1.2) 

has the same formal justification as the KdV equation (1. 1), but has been shown 
by Benjamin et al. (1972) to have better mathematical properties. 

An investigation is made here into the evolution in time, from a sinusoidal 
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initial wave train, of long spatially periodic waves of small but finite amplitude 
propagating in one direction over water of constant depth. The solutions are 
terminated at  a time t N e-2 at which the cumulative effect of the remainder in 
(1.1) and (1.2) may become significant. The solution is valid, to the same approxi- 
mation, for the evolution in space of a temporally periodic wave train driven by 
a wave maker oscillating sinusoidally at  one end of an open uniform channel, up 
to a distance x N c2 from the wave maker (Bona & Bryant 1973). 

The spatially periodic function q(x, t) is expanded in a Fourier series with 
time-dependent coefficients, which is substituted in turn into (1. I) and (1.2) to 
give two sets of equations for the Fourier coefficients. A third set of equations 
for the Fourier coefficients is found by substituting the Fourier series (together 
with an appropriate Fourier series for the velocity potential $(x, y, t ) )  into the 
nonlinear boundary conditions at  the water surface. The same approximation 
in e is made in the nonlinear boundary conditions as is made in the derivation of 
(1.1) and (1.2)) but no explicit restriction is placed on p. 

The three sets of nonlinear equations for the Fourier coefficients have the same 
algebraic form, differing only in the values of the constant coefficients in the 
equations. Solutions are found, both analytically and numerica,lly, in which no 
restriction is placed on the value of p. Also, the two equations (1.1) and (1.2) are 
compared as models of long-wave equations as ,LL tends towards zero at fixed 
small e. 

Wadsen, Mei & Savage (1970) described experiments by Galvin and presented 
the results of numerical calculations which are relevant to the present investiga- 
tion. In their model, a wave maker at one end of a uniform channel was started 
smoothly from rest into sinusoidal motion. It was found in Galvin's experiments 
that, for e/p2 < 6 (in the present notation), the wave train remains nearly 
sinusoidal for a long distance from the wave maker; that, as e/p2 increases, 
secondary crests appear sooner and in greater numbers; and that wave breaking 
occur8 when e/p2 > 2.5. They presented a numerical solution for the case e = t ,  
p = $ 7 ~  and e/p2 = 16/n2, up to a distance 64 wavelengths from the wave maker 
and time 11 periods from rest. They interpreted the motion between the front 
of the wave train and the wave maker as being that of two cnoidal wave trains 
interacting nearly linearly with each other. Their solution is discussed in 5 7. 

Vliegenthart (197 1) developed a numerical scheme for solving the initial-value 
problem for the KdV equation, choosing as one example an initial sinusoidal 
wave train. In the present notation, his solution is for the case 8 = 2') p = (0-06)i.rr 
and elp2 -rc 0.11. He found that the initial solution is approximately repeated, 
apart from a phase shift, after a time 1.84 wave periods from the initial instant. 
His solution is compared in 3 7 with an analytical solution for the same set of 
parameters. 

Kim & Hanratty (1971) presented experimental results and numerical cal- 
culations on the capillary-gravity wave trains generated by a sinusoidally moving 
wave maker at  one end of a uniform shallow channel of water. Most of their 
results lie in the range 0-1 < s/p2 < 0.2. It is difficult t o  compare their results with 
Vliegenthart's solution or with the present solutions because dissipation is 
significant at the wave frequencies they used. Zabusky & Galvin (1971) compared 
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FIGURE 1. Dispersion relation when ,u = J0.05. 

laboratory measurements of periodic wave trains with numerical solutions o 
the KdV equation. Measurements of a wave train at  the &st station in a water 
channel were taken to be the initial conditions for comparison between calcula- 
tions and measurements at the second station. 

2. The principle of near-resonance 

propagating over water of uniform depth is 
The dispersion relation for long gravity waves of infinitesimal amplitude 

where the angular frequency w is measured in units of the inverse time scale and 
the wavenumber k is measured in units of the inverse horizontal length scale. 
The horizontal length scale is chosen so that k = 1 for the initial sinusoidal wave 
train, that is, 

(The reason for this choice is that it makes the derivatives of y(x, 0 )  of the same 
magnitude as q(x, 0) ,  which is not the case when the wavelength is chosen as the 
length scale.) Equation (2.1) with p = 40.05 is plotted in figure 1. The angular 
frequency of the kth wave mode, k = 1,2,  . . . ?  is denoted by wk. 

y(x, 0 )  = cosx. 

40-2 
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Consider now the generation of the second and higher harmonics by the non- 
linear interaction whose first approximation is the nonlinear term of (1.1). The 
interaction of the first harmonic with itself generates a harmonic with wave- 
number 2 and frequency 2w1. The natural harmonic of wavenumber 2 has a 
frequency w2, where from (2.1) 

= 2w, -p + o(p4). 

Hence the nonlinear interaction of the first harmonic with itself when p2 < 1 
causes near-resonant growth of the second harmonic, the maximum amplitude 
of the second harmonic being estimated as (equation (5.2)) 

e/( 2w1- 0 2 )  N 1. 

The maximum amplitude of the second and higher harmonics cannot exceed 1 
since all the energy comes from the first harmonic. The important property is 
that, when p2 < 1, the maximum amplitude of the second harmonic is not simply 
a fraction e ( < I )  of that of the first harmonic, but may rise to a value comparable 
with that of the first harmonic. 

The interaction of the first harmonic with the second harmonic generates one 
harmonic of wavenumber 1 and frequency w2 - wl, and a second of wavenumber 3 
and frequency w, + ol, where 

w1 = w, - w1 +p2 + o(p4) 

w3 = w, + w1 - 3 p  + o(p4). and 

Hence the difference interaction causes near-resonant modification of the first 
harmonic, while the sum interaction causes near-resonant growth of the third 
harmonic, its maximum amplitude being estimated as (equation (5.5)) 

“ 2 / ( 2 0 ,  - w,) (w1+ w, - w3) N $(€//A”)”. 

Similar interactions occur between all harmonics present, although the inter- 
actions are weaker for the higher harmonics because they are further from 
resonance. The possibility exists, therefore, that the evolution of a wave system, 
such as that considered here, may be dominated by the near-resonant interactions 
between the lower harmonics composing it. This property is advanced later as 
the reason for the persistence of a nearly periodic time structure in all solutions 
of the present wave system. 

3. Equations for the Fourier amplitudes 

series 
The spatially periodic surface displacement ~ ( x ,  t )  is expanded in the Fourier 

( 3 . 1 )  

( 3 . 2 )  

1 “  ~ ( x ,  t )  = - x (Ak(t)  exp ik(x - t )  + A:(t) exp - ik(x - t ) )  
2 k = 1  

2 k = 1  

1 ”  
= - x (B,(t)expi(kx-okt)+B$(t)exp-i(kx-w,t)) 
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(* denotes a complex conjugate), where 

Bk(t) exp - iwkt  = A&) exp - ikt  for all k, 
and A,(()) = 1, Ak(0) = 0 for k > 1. 

629 

Each of the three sets of equations for the Fourier amplitudes is of the form 

The set of coefficients derived from the KdV equation (1.1) is 

I 
I 

P k  = $k3, 

Qk, 1 * @, s -  

Rkl = @. 

The set of coefficients for the BBM equation (1.2) is 

P k  = $k3/(i f &k2p2), 

$k/( 1 + ik2p2), 1 * *k, 
( I  + &k2p"), 1 = 4% 2 ,  

.&k, = fk/( 1 + $k2p2)a 

The set of coefficients derived without restriction on p is 

(3.4) 

(3.5) 

+Cz(t)0Xp -i(kZ-bJw,t))COShpk(l +y)/coshpk. (3.8) 

It is noted, from the linear theory, that y'(t), BL(t) and CL(t) are all O(6).  
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FIGURE 2. Dispersion relations for the three models when p = J0.05. 

When the Fourier expansions (3 .2 )  and (3 .8)  are substituted into (3 .7c ,d ) ,  
the elimination of C,(t) leaves 

m 
- ( @ I  + wk+l- @ I )  Rkt B: Bk+l exp i(@l f wk - wk+l) + o(E2) ,  

1=1 

where 8, and R,, are given by equations (3 .6 ) .  Multiplying this equation by 
exp ( - 2iw,t) and integrating, we obtain 

&k--lL& 
BL = - i E  S,&Bk-teXp - i (wl+w&,-wk) t  

1=1 
m 

1=1 
- if2 Rk,BF Bk+t eXp i ( W ,  f w k  - Wk+l)  t f O(E2). 

The constant of integration is put equal to zero because it represents a backward- 
propagating wave. When B, is replaced by A,, the set of equations ( 3 . 3 )  with the 
set of coeEcients (3 .6)  is obtained. 

4. Comparison of the models 
Equations (1 .1)  and (1.2) are tested now as models of long-wave systems by 

comparing the three sets of coefficients (3.4), (3 .5 )  and (3.6). Many of the dif- 
ferences between the solutions may be traced back to differences between the 
sets of coefficients. 
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The coefficient p2Pk is the frequency of the kth harmonic relative to a frame 
of reference moving with unit velocity. The three expressions for the frequency 
of the kth harmonic relative to a stationary frame of reference are 

k - ip2k3 (KdV), 

k / (  1 + $p2k2) (BBM) 

and w(k)  = (k/ptanh kp)g (p-exact). 

The three expressions are sketched in figure 2 for p = 40.05. It can be seen that 
they nearly coincide for kp < 1 ( k  < 4-5), as is expected from the expansion of 
(2.1), but they diverge for kp > 1. 

The KdV expression is very unsatisfactory for large k ,  since the frequency, 
phase velocity and group velocity all become large and negative. This behaviour 
causes the coefficient P, to become large compared with 1, or equivalently, causes 
the interactions to be further from resonance. The amplitudes of the higher 
harmonics are therefore less than they should be, and the convergence of the 
Fourier series is assisted. This property also has the unfortunate effect in many 
numerical solutions that higher harmonics generated randomly by round-off 
errors may distort the solution, unless they are damped artificially. This dif- 
ficulty does not arise here with the truncated Fourier series. 

The BBM expression for the frequency provides a closer approximation to 
the p-exact expression a t  large k, as was pointed out by the proposers of the BBM 
equation (1.2). The phase velocity and the group velocity tend towards zero as k 
becomes large compared with I with both the BBM and the p-exact expressions. 

The KdV expressions for Rk, and Ski, which are independent of p, are equal 
to the limit as p -+ 0 of both the BBM and the p-exact expressions for R,, and 
8 k l .  As p increases from zero, the p-exact expressions for R, and s k f  decrease to 
a minimum, and then increase asymptotically as ,/p. For the applicable range of p 
and values of k and I ,  the KdV expressions for s k i  and R,, are much less of an 
overestimate of their p-exact counterparts than is the KdV expression for Pk 
an overestimate of its p-exact counterpart. 

The BBM expressions for Rk, and Sk, decrease monotonically towards zero 
as p increases from zero. Over the applicable range of p, they provide a good 
fit with the p-exact expressions for the smaller values of k and 1 (for example, 
the two expressions for X,, are almost identical for p < I) ,  but for the larger 
values of k and 2 they underestimate the p-exact expressions. This property 
makes the amplitudes of the higher harmonics less than they should be, and 
therefore assists in the convergence of the Fourier series. 

In  calculations on the present wave system, using each of the three sets of 
coefficients (3.4), (3.5) and (3.6) in turn, only quantitative differences were 
found between the solutions obtained. The KdV and BBM Fourier series both 
converge more rapidly than the p-exact Fourier series, for the reasons outlined 
above. The BBM solutions are closer than the KdV solutions to the p-exact 
solutions because the BBM coefficients are closer, in general, than the KdV 
coefficients to the p-exact coefficients. This might by itself be considered suf- 
ficient reason to prefer the BBM model to  the KdV model. For most numerical 
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solutions, the BBM model is decidedly preferable to the KdV model because it 
avoids the troublesome side-effects associated with the KdV dispersion relation. 

5. Analytical solutions 
The second and higher harmonics are generated by near-resonant nonlinear 

interactions. The higher the harmonic, the less effective are the near-resonant 
interactions generating it and subsequently modifying it. It can be expected 
therefore, and is found to be true, that the maximum amplitudes of the har- 
monics form a descending positive sequence from the value 1 for the first 
harmonic. A solution of the system (3.3), valid up to a given time with a given 
accuracy, is described by the Fourier series (3.1) truncated at the lowest harmonic 
whose maximum amplitude is less than an arbitrary small magnitude. The 
accuracy of such a solution may be tested by comparing it with the solutions 
obtained by terminating the Fourier series at higher harmonics. 

The set Yn of equations contains those equations of the system (3.3) in which 
all the sum terms (the S,, summation) are retained when the Fourier series (3.1) 
is terminated at the nth harmonic in the nonlinear terms. Consider now the sets 
of equations Y;, 9, and Y3 with the object of solving each and of finding for each 
the range of validity of p for given small 8. 

The set 9, is 
A: - ip2Pl A ,  = 0, 

Ah - ip2P2 A ,  = - id321 A:, 
with the solution 

A ,  = expi$P,t, 

A -  es21 (exp 2ip2p1 t - exp ip2p2 t) 
- pu"(P2 - 2P1) 

- 2es21 
2 0 ,  - wg 

sin (wl - 3w2) t exp [i(2 - w1 - +w2) t - &in] -- 

/A2(  is periodic with angular frequency 2wl-w2 and maximum amplitude 
2 ~ 8 ~ ~ / ( 2 0 , - 0 ~ ) .  Comparison of the set 9, with the set Y2 (equations (5.3)) shows 
that the solution (5.2) isvalid when I A ,  A21 N E ,  that is, whenp N 1 or 20, - w2 N 1. 
Neither the KdV equation nor the BBM equation is a satisfactory model for 
this range of p. 

The set 9, is 

(5.3) 

A; - ip2Pl A ,  = - kRl1 A: A,, 

Ah - ip2P2 A2 = - id',, A:, 
Aj - ip2Pp, A3 = - i&831 A ,  A,. 

The first two equations of Y2 satisfy the energy conservation relation 

82,AlAT +RI,A2A: = S21. 
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The solution of 9, is 

where 

1 A,( and / A z /  are both strictly periodic with period 2a/~8,,P,(R,,a~/S,,), where 
F, is the complete elliptic integral of the first kind. The expansions of the period 
and maximum amplitude of (A2( in powers of e/pZ are 

period = [2n-/(,u2(Pz - 2P,))] (1 + O(S/,LA~)~), 

a = [ 2 ~ ~ 2 1 / ( i l L 2 ( ~ z -  2Pl))I (1 + o(~ /Pa) " ,  
which suggests that the solution is valid when (c/,u~)~ N E .  This range of ,u is 
confirmed as follows. 

The 9, solutions for A, and A, are substituted into the 9, convolution for A, 
to give the first approximation 

exp 3i,u2P1 t exp i,uz(Pl + P,) t 

Comparison of the set 9, with the set Y3 (equations (5 .6 ) )  shows that the solution 
(5.4) is valid when (AlA31 N e, that is, ( e / , ~ ~ ) ~  N e or ,u4 N e. The KdV and BBM 
equations are unsatisfactory models for this range of ,u, since terms O(,u4) in the 
remainders of these equations are of the same magnitude as the terms O(e) 
included in the equations. It is an unsatisfactory approximation, therefore, to 
terminate a E'ourier series expansion at  only two terms when using either the 
KdV equation or the BBM equation as a model of a long-wave system. 

The set Y3 is 

(5.6) 1 
A; - ip2& A, = - kRl1 AT A, - i~R12 A: A,, 
A; - ip2P2 A, = - is&',, A2, - kR,, AT A,, 
A; - ip'P3A.3 = - is831 A1 A,, 
A; - ip2P4 A4 = - id341 A1 A3 - i ~ S 4 2  A;. 

The first three of these equations satisfy the energy conservation relation 

X21831A1AT + R11s31 f (R12S21 + R l l R Z l )  = '21S31* 

It has not been possible to find an explicit analytical solution to the set 9,. 
Instead, a first approximation is found by using the previous solutions to the 
sets 9'' and 9,. 
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The final term of each of the first two equations of the set Y3 is rewritten, using 
(5.2) and ( 5 4 ,  to give 

I 
(5.7) 1 

The near-resonant contribution of each of the final terms of the original equations 
appears as a small frequency shift in the second term of each of the rewritten 
equations. 

The solution of (5.7) oscillates closely about the y2 solution (equations (5.4)) 
with the coefficients taking their modified values. \All and \A,\ are nearly 
periodic. It may be deduced by the same arguments as before that this solution 
is valid when ( ~ / p ~ ) ~  - s, that is, when p3 - s. 

Although it appears to be possible to solve the set Y4 by successive approxima- 
tion in powers of s/,u2, the calculations become formidably long. 

The analytical solutions above are valid only for values of s/p2 small compared 
with I. The technique of solution fails for values of e/p2 comparable or large 
compared with 1, that is, for the more strongly nonlinear cases, because the 
number of harmonics becomes too large for analytical manipulation. 

6. Numerical solutions 
Each set SP, of equations may be integrated numerically stepwise in time from 

the given initial values. The numerical scheme used is stable for the linear terms 
of each equation. The kth equation of Yn is replaced by the difference equation 

(Ak(t + At)  - Ak(t - At)) /2At  - +i ,~~&(Ak( t  + At)  + Ak(t - At)  
= - ieFk(A(t)) (k = 1 , 2 ,  . . ., n + l),  (6.1) 

where I$ represents the nonlinear operator. The step size was usually chosen to 
be sat = &n, or €At = 0.01. 

The nonlinear right-hand side of (6.1) was usually evaluated a t  time t when 
calculating A ,  at time t + A t .  It was noticed in cases of marginal numerical 
stability that stability is improved if use is made of Ak(t + At)  in calculations 
subsequent to its determination. This was done by replacing A,(t) by 

$ ( A , ( t - A t ) + A , ( t + A t ) )  ( I  = I , Z ,  ..., k - 1 )  

in the right-hand side of (6.1). 
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The method of solution for each pair of values of E and p2 is as follows. The 
Fourier series is terminated, by trial and error, at the lowest wave mode whose 
maximum magnitude is less than This solution is then compared with the 
solution obtained by including one more wave mode in the Fourier series. If 
the maximum difference between the solutions is less than in magnitude, 
the first solution is taken to be the solution for this E and p2. For some examples 
using the p-exact coefficients, the maximum difference exceeds so further 
wave modes are added to the Fourier series until the difference between con- 
secutive solutions is less than The penultimate solution is then taken as the 
solution for this E and p. 

The form of the solutions is one of intersecting wave trains of wavelength 277. 
The greater the value of e/p2, the greater the number of wave trains present. The 
period of \All is the time scale for the nearly periodic time structure of the wave 
trains. At a time equal to this period after the initial instant, each crest of the 
primary wave train intersects with the crest of the secondary wave train that 
started 2n behind it, together with the crest of the tertiary wave train that 
started 4n behind it, and so on. At a time equal to half this period after the initial 
instant, each crest of the primary wave train intersects with the crest of the 
tertiary wave train that started 2n behind it, and so on. At each intersection, 
the crest of each of the intersecting wave trains is advanced in phase, the dis- 
continuity being greater for the lower order wave train. The crests move with 
nearly constant phase velocity between intersections. In  all examples considered, 
the nearly periodic time structure persisted over the whole range of integration. 

This property raises the question as to whether there exist shallow-water 
solutions (other than a single cnoidal wave) which are strictly periodic in time as 
well as in space. Do the present solutions tend asymptotically towards a 
strictly periodic state, or is it possible to choose the initial conditions appro- 
priately so that the solution is strictly periodic? There is no good reason emerging 
from the present analysis why this should not be true. 

7. Examples 
The first five examples cover the range $ < e/p2 < 4 at fixed e = A. The value 

of e is chosen to be small to make the error O(e2) in the equations also small. The 
range of integration in each case is 0 6 E t  < 571, that is, 50 wave periods (according 
to the linear theory) from the initial instant. 

The sets of three parameter values below refer to the KdV, BBM and p-exact 
equations, in that order. 

6 = &, p2 = $, EIp2 = f. 
The number of harmonics in the Fourier series is 4 in each case; the period of 
\All is 4.7, 5-45 or 6.15 wave periods; the maximum value of \Az]  is 0.35, 0.35 
or 0.39; and the phase velocity of the primary wave trains is 0-95 in each case 
between phase discontinuities at  their intersections with the secondary wave 
trains. The definition of the secondary wave trains is not sufficiently clear to 
measure their phase velocity. The amplitudes ]All, \A2\ and ]A,I for thep-exact 
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FIGURE 3(a) .  For legend see facing page. 

solution are drawn in figure 3 (a),  and the p-exact solution relative to a frame of 
reference moving with unit velocity is shown in figure 3 ( b ) .  The figure can be 
viewed as a perspective drawing of the surface ~ ( x ,  t )  relative to the moving frame 
of reference, with x increasing over 2 wavelengths to the right and t increasing 
over 50 wave periods away from the viewer. The major ridges are the paths of 
the crests of the primary wave trains, and the spurs on the sides of the ridges are 
the paths of the crests of the secondary wave trains.? 

When the analytical solution of .U; derived from (5.5) and (5.7) is compared 
with the numerical solution, A, and A, are almost identical, while A ,  differs by 
only 2 yo in magnitude near the end of the range of integration. 

€=-I_ 2 0 ,  p2=& E/p2= + 
The number of harmonics in the Fourier series is 5, 5 or 6; the period of [All is 
8.2, 8 8  or 9-4 wave periods; the maximum value of \A2\ is 0.58, 0-58 or 0.60; the 
phase velocity of the primary wave trains is 0.98 in each case between phase 
discontinuities at  their intersections with the secondary wave trains; and the 
phase velocity of the secondary wave trains is 0.88 in each case with no measurable 
phase discontinuities at  their intersections with the primary wave trains. 

t Individual profiles of 7 at given t for possible comparison with experiment are available 
from the author. 
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FIGURE 3. E = 0.05, ,u = 40.2. (a) IA,[, IAal, !As[  from the p-exact solution. The 
numbers on the figure refer to the three harmonics. (b)  The ,u-exact solution for ~ ( z ,  t )  
relative to a frame of reference moving with unit velocity. The lines are graphs of ~ ( x ,  t )  
at values of t  a half wave period apart, from zero to 50 wave periods. Successive graphs 
are displaced vertically by a constant amount, with any part of a graph that lies below 
a previous graph being drawn on top of the previous graph. 
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FIGURE 4(a). For legend see facing page. 

8 = & p2 =&, .Ip2 = 1 

The number of harmonics in the Fourier series is 7, 7 or 8; the period of ]All is 
12.85, 13-1 or 13.6 wave periods; the maximum value of \Az]  is 0.79, 0.78 or 0.79; 
the phase velocity of the primary wave trains is 0.998 in each case between dis- 
continuities at their intersections with the secondary wave trains; and the phase 
velocity of the secondary wave trains is 0.94 in each case between small dis- 
continuities at  their intersections with the primary wave trains. The p-exact 
amplitudes lAll, ..., (A,[  areshowninfigure 4(a),andthepu-exact solutionrelative 
to a frame of reference moving with unit velocity is drawn in figure 4(b). The 
figure can be viewed as a perspective drawing of the surface q(x, t )  relative to the 
moving frame of reference. The major ridges are the paths of the crests of the 
primary wave trains. Their phase velocity between intersections is seen to be 
slightly less than I, even though their overall mean phase velocity exceeds 1. 
The minor ridges are the paths of the crests of the secondary wave trains. The 
tertiary wave trains are just discernible as spurs on the sides of the major ridges. 

6 =A, p2 = &, .Ip2= 2 

The number of harmonics in the Fourier series is 10, 10 or 11; the period of \All 
is 18.4, 18.8 or 19-45 wave periods; the maximum value of \Az]  is 0.90, 0.89 or 
0.90; the phase velocity of the primary wave trains is 1.002 in each case between 
phase discontinuities at  their intersections with the secondary wave trains and 
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FIGI7RE 4. E = 0.05, p = J0.05. (a) \A1],  IAzl, ..., \A,( from the p-exact solution. The 
numbers on the figure refer t o  the six harmonics. (b)  The ,u-exact solution for ~ ( z ,  t )  
relative to a frame of reference moving with unit velocity, plotted as in figure 3 (b) .  



640 P. J .  Bryant 

1 .0 

0.9 

0.7 

0.6 

0.3 

0.2 

0.1 

0 10.0 20.0 30.0 40.0 50.0 
Wave periods 

FIGURE 5(a).  For legend see facing page. 

with the tertiary wave trains; the phase velocity of the secondary wave trains is 
0-965 in each case between discontinuities at their intersections with the primary 
wave trains; and the phase velocity of the tertiary wave trains is 0.92 in each 
case with no measurable discontinuities at  their intersections with the primary 
and secondary wave trains. 

E =&, p2 =&, E/p2 = 4 

The number of harmonics in the Fourier series is 15, 15 or 16; the period of /All 
is 26.2, 26.85 or 27.65 wave periods; the maximum value of (A,J is 0.94, 0.95 or 
0.95; the phase velocity of the primary wave trains is 1.005 between phase dis- 
continuities; the phase velocity of the secondary wave trains is 0.985 between 
discontinuities; the phase velocity of the tertiary wave trains is 0.955 between 
discontinuities; and the phase velocity of the quaternary wave trains is 0.925 
without discontinuities. The amplitudes ]All, . . ., ]All] for the p-exact solution 
are plotted in figure 5 (a), and thep-exact solution relative to a frame of reference 
moving with unit velocity is shown in figure 5(b). The figure can be viewed as 
a perspective drawing of the surface q(z,t) relative to the moving frame of 
reference. The major ridges are the paths of the crests of the primary wave trains. 
Each saddle along the major ridges is the region of intersection of a primary wave 
train with a higher order wave train. Using the saddles as starting points, the 
paths of the crests of the secondary, tertiary and quaternary wave trains may 
be followed. 
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FIGURE 5. E = 0.05, p = 40.0125. (a) IA,J, / A , / ,  ..., IA,,l from the y-exact solution. The 
numbers on the figure refer to the first seven harmonics. ( b )  The y-exact solution for 
~(z, t )  relative to a frame of reference moving with unit velocity, plotted as in figure 3 (a). 
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6 = -- :5, ,u = nz/0.06, e/,u2& 0.11 (Vliegenthart 1971) 

The range of integration is 0 < et < 577, that is, 37fr wave periods from the initial 
instant. The number of harmonics in the Fourier series is 3, 3 or 4; the period of 
]All is 1.69, 2-55 or 3-37 wave periods; the maximum value of lAzl is 0.17, 0.18 
or 0.24; and the phase velocity of the primary wave trains is 0.85, 0.89 or 0.89 
between phase discontinuities at  their intersections with the secondary wave 
trains. The secondary wave trains are not defined sufficiently clearly to measure 
their phase velocity. 

When the analytical solution ofY3 derivedfrom (5.5) and (5.7) is compared with 
the numerical solution, the difference is less than 1 % over the whole range of 
integration. 

Vliegenthart presented a numerical solution of the KdV equation over 1.84 
wave periods, which he found to be the time taken for the initial profile to be 
present again, apart from a phase shift. This time, interpreted as the period of 
both /All and I&/, is an overestimate by 9 % of the period calculated from (5.7) 
with the KdV coefficients. Vliegenthart used a spatial increment of Ax = &n. 
(in the present notation) in order to stabilize his numerical scheme. The changes 
in phase of the first, second and third harmonics across this increment are An., 
in and AT, respectively. The error in Vliegenthart's scheme is possibly due 
therefore to the large size of the increment. (The KdV model is well in error 
anyway at this value of p.) 

8 = 1, ,u = Qn, e/p2 = 16/r2 (Madsen, Mei d3 Savage 1970) 

This example was not examined with much enthusiasm because the value of e 
is sufficiently large that approximations made in the derivation of the equations 
become doubtful. The range of integration is 0 < et 6 5n, that is, 10 wave periods 
from the initial instant. The Fourier series for the KdV and BBM equations con- 
verge sufficiently strongly to be terminated at 10 harmonics. The Fourier series 
for the p-exact equations did not converge within the criteria set in $6, so no 
values are quoted for the parameters derived with the ,u-exact coefficients. The 
period of /All is 3.3 or 3.75 wave periods; the maximum value of \Az\ is 0-87 
or 0.82; the phase velocity of the primary wave trains is 1.00 in both cases be- 
tween phase discontinuities; the phase velocity of the secondary wave trains is 
0.80 in both cases between discontinuities; and the phase velocity of the tertiary 
wave trains is 0.5 or 0.6 without discontinuities. 

Madsen, Mei & Savage present a numerical solution of the KdV equation in 
which the phase velocities of the primary and secondary wave trains between 
intersections are found to be 1-08 and 0.86 respectively. The reason for the dis- 
crepancy between their results and the present results is not known. Additional 
confidence is given to the present results because the BBM solution may be con- 
firmed by using a completely different method of numerical solution. This method 
uses a numerical algorithm constructed from the integral equation form of the 
BBM equation (Benjamin, Bona & Mahony, equation (3.1)). The phase velocities 
and wave minima and maxima calculated from the integral equation agree within 
I yo with those calculated from the Fourier series. 
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8. Discussion 
The KdV and BBM models both underestimate the period of lAll, and hence 

the interaction time of the intersecting wave trains. They also both underestimate 
the maximum magnitudes of the harmonics, and hence the magnitudes of the 
wave maxima and minima. It can be seen from the examples that the BBM 
model provides a better estimate, in almost every case, than the KdV model. 

It is interesting that the phase velocities of the intersecting wave trains 
calculated from the three models are in such close agreement. One possible 
reason is that the wave trains all have the wavelength 2n of the lowest harmonic. 
The phase velocity of the wave trains is therefore strongly dependent on the 
properties of the lowest harmonic, and these are well represented by all three 
models. 

It can be seen in figures 3(a),  4(a)  and 5(a)  that the nearly periodic time 
structure of the solutions persists over the whole of the range of integration. 
A reason for this property was advanced in $2,  namely that the behaviour of the 
system is dominated by the near-resonant interactions between the lowest 
harmonics of the initial sinusoidal wave train. Interactions between higher 
harmonics are insignificant in comparison because they are further from 
resonance. 

It is premature to identify the intersecting wave trains of the solutions as 
intersecting cnoidal wave trains, because the amplitude and phase velocity 
relative to still water of individual wave trains cannot be isolated sufficiently 
accurately to be compared with the known parameters of individual cnoidal 
wave trains. The next step planned for extending this investigation will be to 
examine the properties of intersecting cnoidal wave trains with a view to the 
possibility that they can be identified with the intersecting wave trains of the 
present solutions. It may be possible then to determine whether or not there is 
a class of wave trains, of small but finite amplitude on shallow water, which 
can be represented as a superposition of cnoidal wave trains of the same wave- 
length. 

I am grateful to the University of Essex for their hospitality. I wish to thank 
Professor T. Brooke Benjamin for reading this manuscript and for his comments 
on this work. 
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